

Proudly Operated by Battelle Since 1965

Accelerating the development of transformational solvent systems for CO₂ separations

HEAT

FWP 65872

DAVID J. HELDEBRANT NETL CO₂ CAPTURE TECHNOLOGY MEETING PITTSBURGH, PA AUGUST 11, 2016

PNNL at a Glance

Proudly Operated by Battelle Since 1965

Intellectual property and startups

Overview: Integrating Molecular Design, Synthesis & Testing For Multiple Platforms

Proudly Operated by Battelle Since 1965

*Aiding DOE's transformational solvent portfolio address the grand challenge of viscosity

Project Goals and Objectives

Proudly Operated by Battelle Since 1965

Objective

Enable advanced solvent designs for all water-lean solvents up DOE's TRL readiness scale to enable large scale testing and deployment by year 2030.

Goals

- Develop a reduced order viscosity model that can predict key solvent physical and thermodynamic properties
- Down-select hundreds of candidate molecules to 2-4 viable derivatives
- Design testing devices for expedited testing of candidate solvents
- Collect necessary additional thermodynamic and kinetic data to validate models
- Partner with technology owners to advance the field of water-lean solvents

Project Schedule and Major Tasks

Proudly Operated by Battelle Since 1965

Funding: \$2,561,000 / 24 months

BP 1 (May 2014-May 2015) May 2014 **Fundamental** Project management Science 2. Molecular development ☑ Design 200 molecules from current formulation *✓* Construct physical property prediction model Predict physical and thermodynamic properties Revise performance targets ☑ 3. Synthesis and characterization of candidate molecules *✓* Synthesize promising candidates from Task 2 Measure material physical and thermodynamic properties **V BP 2** (May 2015-September 2016) Project management May 2016 4. Measure key process physical and thermodynamic data Applied Kinetics, vapor-liquid equilibria Science and 5. Process performance projections Testing 6. Alternative synthetic methodology identified *✓* 7. Translation of capabilities to other solvent platforms Collaboration with GE on GAP-1 aminosilicones

Case Study: CO₂-Binding Organic Liquids (CO₂BOLs)

Proudly Operated by Battelle Since 1965

*Nile Red Solvatochromatic Polarity Scale

- <u>"Water-lean" organic switchable ionic liquid solvent system</u>
 - Optimal water level in circulating solvent estimated
 - (~5 wt. % water confirmed by simulation)
 - Heat of solution -80 kJ/mol (similar to amines @ -85 kJ/mol)
 - CO₂BOL material projected at (\$35-70/kg)

Jessop *et al. Nature*, **2005**, *436*, *1102*; Phan et al. *Ind. & Eng. Chem. Res.* **2008**, *47*, *3*, *539*; Heldebrant et al. *Energy Environ. Sci.*, **2008**, 1, 487; Koech *et al. RSC Adv.*, **2012**, 3, 566; Mathias et al. *Energy. Environ. Sci.* **2013**, 6, 2233.

CO₂BOL/PSAR Conceptual Configuration

Pacific Northwest

- Similar to aqueous amine systems except:
 - Coalescing tank
 - Antisolvent loop
 - Water management equipment
- Commercially available equipment and infrastructure

CO₂BOLs/PSAR Could be Energetically Viable With Lower Solvent Viscosities

	MEA (Recreated NETL Case 10)	CO₂BOL/PSAR (356 cP)	CO₂BOL/PSAR (578 cP)	CO₂BOL/PSAR (20 cP Target)
Rich solvent loading (mol CO ₂ /mol solvent)	0.49	0.28	0.34	0.50
Temperature Required for Regeneration (°C)	120	104	104	85
Estimated Reboiler Duty (BTU/lb CO ₂)	1,520	1,107	965	870
Increase in Net Electric Power over Case 10 (%)	0	7	9	16

- Viscosity limits the possible *rich* solvent CO₂ loadings and reboiler duty
- If a 20 cP target were achieved:
 - Reboiler duties as low as 870 btu/lb CO₂, (57% of Case 10)
 - 16% increase in net power at an equivalent coal feed rate

Cycle-1 Showed Significant Reductions in Viscosity

- Down-selected from >350 molecules to 13 variants for each viscosity reducing factor
 - Internal H-bond and cation charge solvation (ether) show most promise
- 60% reduction in viscosity for MEIPADM-2-BOL
- Experimental data used to validate molecular models

Technical Approach: CO₂BOL Solvent Class Cycle-2

Proudly Operated by Battelle Since 1965

Using PNNL's infrastructure for 2nd level refinement of CO₂BOLs

- Down-select variants from Cycle-1 derivative
- Use reduced viscosity model that enables viscosity prediction off an optimized structure
- Perform comprehensive solvent property testing using ΔPVT cell

Reduced Model Is Qualitatively Predicting Viscosity From Optimized Structures

Proudly Operated by Battelle Since 1965

 P_{int} : percent internal hydrogen bond, calculated as a function of X

L: mol percent CO₂ loading

 $c_1 \& c_2$: constants to obtain the viscosity magnitude in cP, varied to fit the *experimental* data for at 0 and 25 mol% CO₂

J. Phys. Chem. Lett., 2016, 7, pp 1646–1652, Cantu et al. Submitted, 2016

PNNL's Custom ΔPVT Cell Enables Rapid

*Standardized Measurements on ~40 mL scale

Proudly Operated by Battelle Since 1965

 Flow-through viscometer measures cP as a function of CO₂ loading

Screening

Miniaturized wetted wall contactor can extract qualitative kg'data

12

Applying Molecular Design Towards CO₂BOL Cycle-2

Proudly Operated by Battelle Since 1965

What we learned from Cycle-1:

- High degree of internal hydrogen bonding
- Ether groups for cation charge solvation
- Potential for neutral capture

Viscosity Modifying Factors:

- Fine tuned electronics for acid/base equilibria
- Steric crowding to reduce stacking

Reduced Model Predicts ~90% Reduction for Multiple Derivatives (@ 25 mol% CO₂)

Synthesis & Testing of Cycle-2 Derivatives Confirms Significant Viscosity Reduction

- Proudly Operated by Battelle Since 1965
- Synthesizing 4 variants of MEIPADM-2-BOL with ether and isopropyl moieties
 - 90% reduction predicted @ 25 mol% CO₂, 40 °C
- BEIPADIPA-2BOL currently being scaled up for testing

100 Molecules

IPADM-2-BOL @ 40 mol% CO₂ MEIPADM-2-BOL @ 35 mol% CO₂ BEIPADIPA-2-BOL @ 42 mol% CO₂

2-4 Molecules

Integrating Molecular Design, Synthesis & Testing For Aminosilicone Solvents

Proudly Operated by Battelle Since 1965

*Collaboration with GE Global Research

1) Mathias et al Energy Procedia, 2015; Cantu et al. J. Phys. Chem. Lett. 2016, 7, 1646. 2) Manuscript in preparation

1) Mathias et al Energy Procedia, 2015; Cantu et al. J. Phys. Chem. Lett. 2016, 7, 1646. 2) Malhotra et al. Manuscript in preparation

Heterogeneous Molecular Structure May Account for Similar Materials Performance

CO₂BOLs and aminosilicones show similar predicted solvent structure and viscosity profiles as a function of CO₂ loading

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

Mass Transfer of GAP-1/TEG is Inverse With Temperature

- lnverse k_q with temperature observed
 - Similar to IPADM-2-BOL¹
- Follows trend of physical solubility of CO₂ driving liquid-stage kinetics

Mass Transfer of GAP-1/TEG is Greater Than MEA & Piperazine

Proudly Operated by Battelle Since 1965

GE Global Research

- k_g of GAP-1 is twice that of 8 m PZ and 6 times that of 9 m MEA
 100 Pa of P*_{CO2} at 40 °C
- Non-aqueous k_g values larger at higher solution viscosities¹

Strategies of Refinement of GAP-1 Derivatives

*GAP-1/TEG shows enhanced kinetics compared to aqueous solvents though viscosity can still be lowered

Proudly Operated by **Battelle** Since 1965

<u>Near Term</u>

- Identify co-solvents that dissolve ionic clusters
- Identify potential diluents to breakup ionic clustering

Long Term

- Apply findings from CO₂BOL solvent class to refine GAP derivatives
 - Promote internal H-bonding
 - Add ether groups for charge solvation
 - Increase steric bulk
 - Optimize acid/base equilibria

Benefits of Technology to the Program

- An approach that can benefit all solvent classes
- Rapid modeling and testing of all CO₂ binding mechanisms
- Detailed understanding of molecular level interactions and how they impact performance

Next Steps: FY17 Work Scope

Proudly Operated by Battelle Since 1965

Three parallel efforts at each level of testing and development

Solvent Class #3 Molecular Development Cycle 1 Aminosilicone Molecular Development Cycle 2 CO₂BOL/PSAR Continuous Flow Testing for TEA

Development of model Initial solvent screen Molecular-level refinement Reduce viscosity by up to 90% Validate performance \$40/ton CO₂ target

Acknowledgements

<u>Funding</u>: US Department of Energy Office of Fossil Energy FWP 65872 Andy Aurelio, Lynn Brickett, John Litynski

Proudly Operated by Battelle Since 1965

Advisory process engineering thermodynamics: Dr. Paul M. Mathias Dr. Robert Perry Tiffany Westendorf Benjamin Wood

Dr. Josh Stohlaroff, Dr. John Vericella Abhoyjit Bhown

Impacts of a Heterogeneous Solvent Structure - Collaboration With CCSI

Proudly Operated by Battelle Since 1965

Aqueous Profile

CO₂BOL Profile

- Aqueous solvents have a reactive interface, a diffusion film, then bulk liquid.¹
- CO_2BOLs have a diffusion film (passivated interface) followed by a reaction film, then bulk liquid.²
- Potential new diffusion routes and mechanisms of CO₂ and CO₂-containing ions
- Different contactor or packing may be needed New film theories needed to quantify this behavior

1. Dugas, R.. Ph.D. Dissertaion UT Austin (2009), 2. Liauw Analyst 2013, 138, 819-824, 3.

Utilizing A Heterogeneous Solvent -Collaboration With CCSI

Proudly Operated by **Battelle** Since 1965

Image taken from: http://www.wes-worldwide.com